Bidirectional plasticity in striatonigral synapses: a switch to balance direct and indirect basal ganglia pathways.
نویسندگان
چکیده
There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral (direct pathway) synapses are not known. Here, we used electrophysiological techniques to describe dopamine D(1)-receptor-mediated facilitation in striatonigral synapses in the context of its interaction with glutamatergic inputs, probably coming from the subthalamic nucleus (STN) (indirect pathway) and describe a striatonigral cannabinoid-dependent long-term synaptic depression (LTD). It is shown that striatonigral afferents exhibit D(1)-receptor-mediated facilitation of synaptic transmission when NMDA receptors are inactive, a phenomenon that changes to cannabinoid-dependent LTD when NMDA receptors are active. This interaction makes SNr neurons become coincidence-detector switching ports: When inactive, NMDA receptors lead to a dopamine-dependent enhancement of direct pathway output, theoretically facilitating movement. When active, NMDA receptors result in LTD of the same synapses, thus decreasing movement. We propose that SNr neurons, working as logical gates, tune the motor system to establish a balance between both BG pathways, enabling the system to choose appropriate synergies for movement learning and postural support.
منابع مشابه
Pii: S0303-2647(00)00135-0
A possible mechanism underlying the modulatory role of dopamine, adenosine and acetylcholine in the modification of corticostriatal synapses, subsequent changes in signal transduction through the ‘direct’ and ‘indirect’ pathways in the basal ganglia and variations in thalamic and neocortical cell activity is proposed. According to this mechanism, simultaneous activation of dopamine D1/D2 recept...
متن کاملCoordinated Regulation of Synaptic Plasticity at Striatopallidal and Striatonigral Neurons Orchestrates Motor Control.
The basal ganglia play a critical role in shaping motor behavior. For this function, the activity of medium spiny neurons (MSNs) of the striatonigral and striatopallidal pathways must be integrated. It remains unclear whether the activity of the two pathways is primarily coordinated by synaptic plasticity mechanisms. Using a model of Parkinson's disease, we determined the circuit and behavioral...
متن کاملSignal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways
Many of the synapses in the basal ganglia display short-term plasticity. Still, computational models have not yet been used to investigate how this affects signaling. Here we use a model of the basal ganglia network, constrained by available data, to quantitatively investigate how synaptic short-term plasticity affects the substantia nigra reticulata (SNr), the basal ganglia output nucleus. We ...
متن کاملInput- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits
The serial ordering of individual movements into sequential patterns is thought to require synaptic plasticity within corticostriatal circuits that route information through the basal ganglia. We used genetically and anatomically targeted manipulations of specific circuit elements in mice to isolate the source and target of a corticostriatal synapse that regulates the performance of a serial or...
متن کاملDopaminergic Presynaptic Modulation of Nigral Afferents: Its Role in the Generation of Recurrent Bursting in Substantia Nigra Pars Reticulata Neurons
PREVIOUS WORK HAS SHOWN THE FUNCTIONS ASSOCIATED WITH ACTIVATION OF DOPAMINE PRESYNAPTIC RECEPTORS IN SOME SUBSTANTIA NIGRA PARS RETICULATA (SNR) AFFERENTS: (i) striatonigral terminals (direct pathway) posses presynaptic dopamine D(1)-class receptors whose action is to enhance inhibitory postsynaptic currents (IPSCs) and GABA transmission. (ii) Subthalamonigral terminals posses D(1)- and D(2)-c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Learning & memory
دوره 18 12 شماره
صفحات -
تاریخ انتشار 2011